T TĂNANÎ ÎNANÎ ÎNANÎ DI TÎNANÎ KURDÎ ÎNANÎ Î

Seat No.

HAK-003-1015026 B. Sc. (Sem. V) (CBCS) Examination

May - 2023 Physics - 502 (Old Course)

Faculty Code : 003 Subject Code : 1015026

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

- **Instructions :** (1) All questions are compulsory.
 - (2) Symbols have their usual meanings.
 - (3) Figures to the right indicate marks
- 1 (a) Answer the following objective questions:
 - (1) Ohm's law in vector form is given by $\overrightarrow{J} = \sigma \overrightarrow{E}$. True or false?
 - (2) Write Ampere's circuital law in differential form.
 - (3) Write Poynting's vector in differential form.
 - (4) Write the equation of continuity.
 - (b) Answer any one question:
 - (1) Show that the function $f = A \sin[b(z vt)]$ satisfies the wave equation.
 - (2) Find the self inductance of a toroidal coil of inner radius a and outer radius b, having height h and number of turns N.

(c)	Answer any one question:	3
-----	--------------------------	---

- (1) Derive the expression for motional emf.
- (2) Derive Neumann's formula.

(d) Answer any one in detail:

- (1) State and explain Poynting's theorem.
- (2) Write Maxwell's equations. Explain Maxwell's modification of Ampere's law.

1

HAK-003-1015026]

[Contd...

2

4

2 Answer the following objective questions: (a)

(1)
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
 True or false
(2) $\frac{E_0}{B_0} = \dots$

- Write the one dimensional wave equation. (3)
- (4) Write Maxwell's first equation (Gauss theorem) in free space (vacuum).

Answer any one question : (b)

- (1) The intensity of sunlight falling on the earth's surface is $1300 W/m^2$. Find the pressure exerted by the sunlight if the earth is considered as
 - (a) a perfect absorber.
 - (b) a perfect reflector.
- For a given electric field $\overrightarrow{E} = 10\sin(\omega t kz)\hat{y}$, find (2)*B* and the Poynting vector \vec{S} .
- Answer any one question : (c)
 - Explain polarization of electromagnetic waves. (1)
 - Starting with Maxwell's equation derive the wave equation (2)for electromagnetic waves in vacuum.
- (d)Answer any one in detail :
 - (1)Obtain the equation for energy and momentum in electromagnetic waves.
 - Explain the boundary conditions for reflection (2)and transmission and obtain the equation for their amplitudes.

3 Answer the following objective questions : 4 (a)

2

- (1)Define vector potential.
- (2)Define scalar potential.
- What is *d*' Alembertian operator? (3)
- (4) Define retarded time.

HAK-003-1015026]

[Contd...

2

3

- (b) Answer any one question :
 - (1) Find the fields corresponding to

$$\overrightarrow{A}(\overrightarrow{r},t) = -\frac{1}{4\mu\varepsilon_0}\frac{qt}{r^2}\hat{r}, \phi = 0$$

(2) Use the gauge function $\lambda = -\frac{1}{4\pi\varepsilon_0} \frac{qt}{r}$ to find new potentials.

.

(c) Answer any one question : 3 Explain retarded potential. (1)(2)Explain Jefimenko's equations. Answer any one in detail : (d) 5 Explain gauge transformation. (1)(2)Explain Lienard-Wiechert potential. Answer the following objective questions: (a) 4 What is Poynting vector? (1)Write Abraham Lorentz formula. (2)If curl of *E* is zero then *E* can be defined as (3)

(4) What is radiation?

(b) Answer any one question :

(1)
$$V(\vec{r}, \theta, t) = \frac{p_0 \omega \cos \theta}{4\pi r \varepsilon_0 c} \sin \omega \left(t - \frac{r}{c} \right)$$
 Express this in

co-ordinate free from by writing $p \cdot \cos \theta = p_0 \cdot \hat{r}$.

(2)
$$\vec{E} = -\frac{\mu_0 p_0 \omega^2}{4\pi r c^2 \varepsilon_0} \left(\frac{\sin \theta}{r}\right) \cos \omega \left(t - \frac{r}{c}\right) \hat{\theta}$$
 Express this in

co-ordinate free from by writing $p \cdot \cos \theta = p_0 \cdot \hat{r}$.

3

HAK-003-1015026]

4

[Contd...

- (c) Answer any one question :
 - (1) Explain Coulomb's gauge.
 - (2) Write the equation for electric dipole radiation with $d \ll r$ and $d \ll \lambda$.
- (d) Answer any one in detail : 5
 - (1) Explain radiation from an arbitrary source.
 - (2) Explain power radiated by a point charge.
- 5 (a) Answer the following objective questions :
 - (1) What is world line?
 - (2) State Einstein's postulates.
 - (3) What are covariant and contravariant terms?
 - (4) Define inertial frame of reference.
 - (b) Answer any one question :
 - (1) Synchronized clocks are stationed at regular intervals, a million km apart, along a straight line. When the clock next to you read 12 noon. What time do you see on the 90th clock down line?
 - (2) A muon is travelling through the laboratory at threefifths the speed of light. How long does it last?
 - (c) Answer any one question :
 - (1) Explain Lorentz transformation in terms of relativity.
 - (2) Explain proper time and proper velocity.
 - (d) Answer any one in detail :

4

- (1) Explain the geometry of relativity in detail.
- (2) Explain the structure of space time.

4

2

3